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Coherent Structure Phenomena in Drift Wave–Zonal Flow Turbulence
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Zonal flows are azimuthally symmetric plasma potential perturbations spontaneously generated from

small-scale drift-wave fluctuations via the action of Reynolds stresses. We show that, after initial linear
growth, zonal flows can undergo further nonlinear evolution leading to the formation of long-lived
coherent structures which consist of self-bound wave packets supporting stationary shear layers. Such
coherent zonal flow structures constitute dynamical paradigms for intermittency in drift-wave turbulence
that manifests itself by the intermittent distribution of regions with a reduced level of anomalous
transport.

PACS numbers: 52.35.Mw, 52.35.Ra, 52.55.Dy

Generation of zonal flows by drift waves in plasmas and
the analogous Rossby waves in geostrophic fluids is often
observed, both in nature and in numerical simulations
[1–3] (see also references in [2]). [We define a zonal
flow as a poloidal and toroidally symmetric !qz ! qu !
0" potential perturbation with a finite radial scale q21

r
significantly larger than the scale of the underlying small-
scale turbulence, qr ø kr , where q is the wave vector
for the large-scale perturbations; k is the wave vector
of the background small-scale turbulence; r , u, and z
are the radial, poloidal, and toroidal directions of a
straight cylindrical tokamak.] Already, earlier numerical
simulations of drift-wave turbulence in a tokamak plasma
[4–7] indicated the presence of large-scale components of
the spectrum which were later identified as zonal flows.
Over the past few years, it has been realized [8,9,10]
that zonal flows play a major role in controlling the
level of anomalous transport due to drift-wave turbulence
in magnetic confinement systems. Recent advances in
numerical simulations of tokamak plasmas [11] have
unambiguously demonstrated that a certain level of E 3
B flow (in the poloidal direction) triggers a transition to
a state with greatly reduced anomalous transport. The
suppression of the turbulence by the sheared E 3 B
flow theoretically investigated in Refs. [12–14] has also
been confirmed in experiment [15]. These works indicate
that zonal flows play a critical role in the dynamics of
drift-wave turbulence and its self-regulation [10]. Further
development of the theory of zonal flows is imperative for
the understanding of the complex dynamics of transport
processes in a tokamak. Because of a similarity between
equations for drift waves in plasma and Rossby waves in
rotating atmospheres, development of the theory of zonal
flows is also important in the geophysics context [3].
The underlying mechanism for zonal flow growth in

drift-wave turbulence is the inverse cascade process [1,16],
i.e., the energy transfer to large scales. As a result, the
effects of small-scale fluctuations appear in the large scale
not as turbulent damping but as negative viscosity [17–20]
that gives rise to the zonal flow instability. In this paper,

we study the nonlinear evolution of zonal flows and the
underlying small-scale turbulence. Until now, virtually all
theoretical analyses of zonal flows have been perturbative
and statistical in approach, thus precluding the treatment
of coherent structure phenomena. However, as the am-
plitude of the zonal flows increases, a variety of nonlinear
phenomena can occur, such as wave breaking, wave packet
trapping, etc. We investigate such phenomena by demon-
strating that finite amplitude shear flow perturbations can
propagate radially and form kink-type structures describ-
ing transitions between two different values of the zonal
flow velocity. (These structures are similar to kink soli-
tons of Bloch waves for the magnetization vector in ferro-
magnetism.) On other hand, the small-scale turbulence is
also affected by the large-scale shear flow via a refraction
of the ray trajectories for the wave-action density [10,21].
Thus, for a sufficiently large amplitude of the zonal flow
perturbations, the wave packets may be trapped, so that sta-
tionary Bernstein-Greene-Kruskal (BGK)–type solutions
for the wave quanta density can be realized. We quan-
titatively characterize such self-trapped wave packets and
their stability.
We consider zonal flows dynamics within a simple

model of drift-wave turbulence described by the equa-
tion [22]
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Here, r2
s ! Te#miv

2
ci is the ion-sound Larmor radius,

V! ! ûcTe#eB0Ln is the electron diamagnetic drift veloc-
ity, and Ln is the characteristic length scale of plasma inho-
mogeneity. The electrostatic potential f is represented as
a sum of fluctuating f̃ and mean f̄ quantities, V0 ! cb 3
=f̄#B0, ṼE ! cb 3 =f̃#B0. The large-scale plasma
flow V0 varies on a longer time scale compared to the
small-scale fluctuations, so that we may employ a multi-
ple scale expansion, thus assuming that there is a sufficient
spectral gap separating large-scale !X, T " and small-scale
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!x, t" motions. In some situations, the space scale separa-
tion may not be so clearly pronounced [5,6]. However, the
small-scale components of the zonal flows with qr $ kr
are in general less important, as shown in Refs. [10,14].
The model given by Eq. (1) is similar to the Hasegawa-

Mima model except the different treatment of the mean
component f̄!X, T " which does not enter the first term in
(1) because plasma density does not follow the Boltzmann
distribution for the zonal flow modes with qz ! qu ! 0.
Note that it is the total electrostatic potential f that enters
the last term in (1).
Averaging (1) over the magnetic surface and over fast

small scales, we obtain the evolution equation for the
mean flow:
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where the last term describes the flow damping due to
plasma collisions [23]. We assume that the mean flow is
one dimensional f̄!r, T ", so that =u ! 0, while the small-
scale fluctuations are two dimensional, f̃ ! f̃!r, u".
Calculation of the mean quantity =rf=uf is most

conveniently done by employing the kinetic equation for
the wave action [10,19,21,24]:
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where Nk ! E#vl
k ~ !1 1 k2

"r2"2jfkj2 is the adiabatic
action invariant [22], E is the wave energy, and vk !
kuV0 1 vl

k ! kuV0 1 kuV!#!1 1 k2
"r2" is the wave

frequency. Note that it is the local frequency vl
k (without

the Doppler shift) that enters the action invariant. We
take ku ! const for azimuthally symmetric flows.
The instability of the zonal flow can be obtained

by linearizing Eqs. (2) and (3) for small perturbations
!Ñk , f̄" $ exp!2iVT 1 iqr"; q % qr ! 2i≠#≠r is the
radial wave vector of the large-scale perturbation. The
instability is related to the in-phase (resonant) part of Ñk
which is calculated from (3):
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Here, R!V, q, Dvk" ! i#!V 2 qVg 1 iDvk" is the re-
sponse function, and Dvk is the nonlinear broadening in-
crement, Vg ! ≠v#≠kr . In the weakly nonlinear regime
R!V, q, Dvk" ! pd!V 2 qVg". For the wide spectrum
of fluctuations, one obtains R!V, q, Dvk" ! 1#Dvk .
Using (4) in (2), one finds the growth rate g ! q2Drr

of the zonal flow instability [11]:

Drr ! 2

µ

c
B0

∂2 Z R!V, q, Dvk"k2
ykr

!1 1 k2
"r2

s "2

≠Nk

≠kr
d2k . (5)

Note that the condition for growth is kr≠Nk#≠kr , 0,
which is typically satisfied in drift-wave turbulence.
Equation (5) describes an initial (linear) stage of zonal
flow growth due to the resonant interaction. For typical

tokamak parameters V ø q ? ≠vk#≠k, so that the non-
resonant response Ñ
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k from (3) is
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As the amplitude of the zonal flow increases, nonlinear
effects become important. The nonlinear response can be
determined to the next order:
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Substituting Ñk ! Ñr

k 1 Ñ
!1"
k 1 Ñ

!2"
k into (2), we

obtain the nonlinear equation for the evolution of the
zonal flow:

≠

≠t
≠

≠r
V0 2 u

≠2

≠r2 V0 2 b
≠2

≠r2 V 2
0 ! 2Drr

≠3

≠r3 V0 .

(8)
The u parameter has a meaning of the radial propagation
velocity and is defined by
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The nonlinear term b is
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Cooperative effects of wave motion, wave steepening,

and instability create a possibility of stationary or moving
“switching” wave (kink soliton) which is a transition layer
between two different values of the mean flow. The
simplest solution of this type can be obtained from (8)
by neglecting the time dependent term on the left. Then
(8) can be integrated twice to obtain

uV0 1 bV 2
0 ! Drr

≠

≠r
V0 1 C . (11)

The integration constant C is determined from the bound-
ary conditions V0 ! V1, V 0

0 ! 0, for r ! 2`, and V0 !
V2, V 0

0 ! 0, for r ! `. From (11) we find

V !
1
2

&V1 1 V2 1 !V1 2 V2" tanh!2r#d"' , (12)

where d ! 22Drr#b!V1 2 V2". The values of V1 and
V2 are related to the coefficients u and b in an obvious
way. One can simply generalize this result for a moving
structure in the form V !r 2 u0t", leading to a one-
parameter family of solutions.
It follows from (8) that, in general, zonal flows are not

purely stationary but radially moving structures. Their
radial velocity given by Eq. (9) is determined by the
value of the radial group velocity as well as by the
spectral density of background fluctuations. A simple
estimate of u from (9) shows that u is of the order
of the drift velocity, u ( jku#kr j jefk#Tej2y2

Te#V! (
yTers#Ln ! V!. For the unstable case, kr≠N0#≠kr , 0,
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the radial velocity is opposite to the direction of the
group velocity Vgr , and inversely proportional to it in
amplitude. [Note that our equation is derived for the
slow evolving zonal flows with a characteristic frequency
V which satisfies the inequality V ø q ? Vg, so the
limit Vg ! 0 is not encompassed by expression (9).]
This simple analysis demonstrates the self-organization
properties of the drift wave–zonal flow system, which
lead to the formation of propagating shear layer “domain
walls” between regions of constant flow velocity.
The development of the negative diffusion instability

and nonlinear wave breaking sometimes leads to finite-
time singularities, as reported in [25]. The development
of such singularities may be prevented by nonlinearities
[similar to that in Eq. (8)] and by higher order diffusive
terms which limit the region of unstable q. Higher order
diffusive terms (e.g., fourth order hyperviscosity) are ob-
tained from higher orders of the two-scale expansion [20]
and from higher order moments responsible for wave-
particle (Landau) interactions effects [7]. The nonlinear
Eq. (8) with the fourth order derivative term becomes a
Kuramoto-Sivashinskii-type equation, which is a typical
model for pattern formation in unstable media [26].
Another class of stationary solutions for the system

of Eqs. (2) and (3) can be obtained by exploiting its
analogy with the collisionless Vlasov equation and the self-
gravitating systems [27]. These strongly nonlinear solu-
tions have properties akin to BGK modes of the Vlasov
equation and occur due to the reflection and trapping of
wave packets by zonal flows [22,28]. As a result, the dis-
tribution function of the wave-action density is modified
toward a marginal equilibrium state for the zonal flow, i.e.,
the state with no net growth. As with BGK solutions of
the Vlasov-Poisson system, there is an infinity of such so-
lutions. To this end, we adopt the methodology of Dupree
[28,29] to simply characterize stable, localized equilibria
which are “Jeans marginal” states [27], i.e., states which
marginally stable to zonal flow instability. The central
idea of such equilibria is an existence of a unique, self-
supported scale, namely, the Jeans length [27]. By using
a box approximation to the packet’s quanta density distri-
bution (i.e., action density), the packet intensity, size, dis-
persion, and speed may be self-consistently related by an
analytically derived marginal stability criterion.
The box approximation for the wave-action density al-

lows us to give simple quantitative relations. Within this
approach, the action density is Nk ! N0 1 Ñ!ku"W !k 2
kr ,0, Dkr", where W!k 2 kr ,0, Dkr" is a “box” function
equal to unity for jkr 2 kr ,0j , Dkr#2 and equal to zero
otherwise. Then, the gradient of the action density is
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where kr ,0 is the wave packet or caviton location, and Dkr
is the bump or hole width. The dispersion Eq. (5) for the

instability of zonal flow perturbations has the form
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In the marginal state we set ReV ! 0 and include the

effect of the damping of the zonal flow gd due to ion-
ion collisions [9,10], ImV ! 2gd , so that the dispersion
equation takes the form
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Introducing the response function
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which describes the linear response of zonal flow to the
self-bound packet, and taking Ñ!ku" ! d!ku 2 ku,0" for
simplicity, we obtain, from (15),

e!q" ! 2q2c2
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We approximated kr ( kr ,0 except in the argument of
the group velocity Vg ! Vg!kr 6 Dkr#2". After some
simple algebra, Eq. (17) becomes

e!q" ! q2c2
sk2
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3

∑ qDkrV 0
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r q2V 02
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This equation relates the amplitude of the bump/hole Ñ
to the wave vector q for the marginal equilibrium states.
For a broad fluctuation spectrum, jqVgj ø jDvkj, and
Eq. (18) reads

Dv2
k 1 Dk2

r q2V 02
g #4 ! 2

Ñ
e!q"

q2c2
sk2

u,0kr ,0!qDkrV 0
g" .

(19)
The dependence on q here is somewhat analogous to

the speed-amplitude relation familiar from soliton theory.
Taking into account that V 0

g , 0 here, the self-trapping
condition is Ñ . 0 for e!q" . 0, and Ñ , 0 for e!q" ,
0. For a given sign of e!q", either Ñ . 0 or Ñ , 0
is selected. Thus the spectrum of the self-trapped wave
packet should exhibit definite skewness, depending on
radial scale and the scaling of the background spectrum.
Note that effects of the dispersion !Dkr " and decorre-

lation !Dvk" add quadratically in Eq. (19). This is not
surprising, as turbulent motions are a natural source of
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support against self-binding and collapse in self-attracting
media. It is indeed interesting to note that structured so-
lutions persist in the presence of strong dissipation, such
as that due to eddy decorrelation Dvk and collisional
flow damping gd .
We have shown in this paper that the condensation of

drift waves onto the long wave-length region, a process
which is initially described by the negative viscosity insta-
bility for the long wavelength component, further leads to
the nucleation of large-scale coherent structures. These
structures occur both in the large-scale component [as
given by Eq. (11)] and in the small-scale background tur-
bulence [as described by Eq. (19)]. The combined effects
of the nonlinearity and radial motion cause formations
of sharp moving transition fronts switching between two
different values of the mean plasma velocity. Similar
structures were also observed in numerical simulations in
[4,25]. These coherent structures are consistent with a sce-
nario of intermittent regions of strong shear that may be
an underlying cause of the transport barriers in the tem-
poral L ! H dynamics [30] and may give rise to struc-
tured, spatially intermittent behavior in generic drift-wave
turbulence. Formation of the sharp transition regions is in
general agreement with experimental observations of the
zonal flow profiles in a number of geostrophic fluids [2].
The picture of localized propagating fronts removing the
“supercritical” perturbation from the growth zone is also
similar to the avalanche concept from self-organized criti-
cality [31]. It is interesting to note that the nonlinear equa-
tion derived in the present paper for the kink structures in
zonal flows is the Burgers equation, recently proposed as a
simplest prototype model for the avalanche transport event
[31]. The other type of structures in the background small-
scale turbulence are due to wave packet trapping and re-
flection. We have characterized the amplitude and the size
[Eq. (19)] of the localized wave packets that are in self-
consistent stationary equilibrium with zonal flows. These
structures should manifest themselves as bumps or holes in
the wave-action density spectrum. We have demonstrated
that such structures will persist in the presence of dissi-
pative processes such as ion-ion collisions and drift-wave
decorrelation. All told, both examples of structure self-
organization in drift wave–zonal flow systems constitute
dynamical paradigms for the origin of spatiotemporal in-
termittency in drift-wave turbulence.
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